View Counter: Abstract [ 23 ] and PDF file [ 23 ]

PERFORMANCE OF SOMATIC EMBRYOGENESIS DEVELOPMENT UNDER DIFFERENT 2,4-D AND COCONUT WATER CONCENTRATION IN SUGARCANE VAR. BULULAWANG

Parawita Dewanti, Safira Arikha Maryam, Laily Ilman Widuri, Purnama Okviandari

Abstract


Mass propagation technology through somatic embryogenesis has become an alternative for producing sugarcane seedlings rapidly.Application of proper plant growth regulator and concentration contribute to support somatic embryogenesis development. This study applied the combination of liquid and solid culture during proliferation stage to promote cell dispersion of embryogenic callus, rapid  embryo somatic production, and improve regeneration potency of somatic embryo. Application of 2,4-D and coconut water during proliferation may expected as proper combination for accelerating somatic embryo development and regeneration.Development of somatic embryogenesis in sugarcane var. Bululawang during proliferation were described in this study. Embryogenic callusfrom induction media were transferred to proliferation media containing MS Basal + vitamin supplemented with sucrose different level of 2,4-D (1 mgl-1, 2 mgl-1, 3 mgl-1, 4 mgl-1 ) and coconut water (0% and 5%).Result showed that low concentration of 2,4-D induced optimum somatic embryogenesis development in proliferation and regeneration. Concentration of single 2,4-D 1 mgl-1 without coconut water  induced rapid development of scutelar and coleoptilarduring proliferation and resulted in better shoot regeneration. In other way, 4 mgl-1 of 2,4-D concentration  affected to inhibit scutelar and coloeptilar formed as the result of failure callus differentiation.

Keywords


Proliferation; somatic embryo, scutelar; coleoptilar; regeneration.

References


S. Solomon and Y. R. Li, “Editorial-The Sugar Industry of Asian Region,” Sugar Tech, vol. 18, no. 6, pp. 557–558, 2016.

S. Budi, E. S. Redjeki, and A. E. Prihatiningrum, “Effect variety and stratified plantlet nursery to the growth sugarcane (Saccharum officinarum L.) propagated in single bud,” Res. J. Seed Sci., vol. 9, no. 2, pp. 42–47, 2016.

P. Lestari, N. Hanani, and S. Syafrial, “Technical Efficiency Analysis of Sugar Cane Farming in Malang Regency, Indonesia,” Agric. Soc. Econ. J., vol. 19, no. 01, pp. 1–8, 2019.

S. Raza et al., “Regeneration in sugarcane via somatic embryogenesis and genomic instability in regenerated plants,” J. Crop Sci. Biotechnol., vol. 15, no. 2, pp. 131–136, 2012.

G. B. de Alcantara, R. Dibax, J. C. Bespalhok Filho, and E. Daros, “Plant regeneration and histological study of the somatic embryogenesis of sugarcane (Saccharum spp.) cultivars RB855156 and RB72454 - doi:10.4025/actasciagron.v36i1.16342,” Acta Sci. Agron., vol. 36, no. 1, p. 63, 2014.

A. S. Heringer et al., “Label-free quantitative proteomics of embryogenic and non-embryogenic callus during sugarcane somatic embryogenesis,” PLoS One, vol. 10, no. 6, pp. 1–23, 2015.

P. Dewanti, L. I. Widuri, C. Ainiyati, P. Okviandari, Maisaro, and B. Sugiharto, “Elimination of SCMV (Sugarcane Mozaik Virus) and Rapid Propagation of Virus-free Sugarcane (Saccharum officinarum L.) Using Somatic Embryogenesis,” Procedia Chem., vol. 18, no. Mcls 2015, pp. 96–102, 2016.

N. Helal, “The green revolution via synthetic (artificial) seeds: a review,” Res J Agric Biol Sci, vol. 7, no. 6, pp. 464–477, 2011.

W. N. Ningtiyas, P. Dewanti, and B. Sugiharto, “Preservation Effect Of Peg (Polyethylene Glycol) In Sugarcane (Saccharum officinarum) Nxi 1,3 Synthetic Seed,” Ann. Bogor., vol. 20, no. 2, pp. 63–68, 2016.

A. Fehér, “Somatic embryogenesis - stress-induced remodeling of plant cell fate,” Biochim. Biophys. Acta - Gene Regul. Mech., vol. 1849, no. 4, pp. 385–402, 2015.

A. Ali, M. Iqbal, A. Majid, N. H. Naveed, A. Rehman, and S. Afghan, “In vitro conservation and production of vigorous and desiccate tolerant synthetic seed formation in sugarcane ( Saccharum officinarum L .).”

S. Yasmin, I. A. Khan, A. Khatri, N. Seema, M. A. Siddiqui, and S. Bibi, “Plant regeneration from irradiated embryogenic callus of sugarcane,” Pakistan J. Bot., vol. 43, no. 5, pp. 2423–2426, 2011.

S. Pandey, P. Shukla, and P. Misra, “Physical state of the culture medium triggers shift in morphogenetic pattern from shoot bud formation to somatic embryo in Solanum khasianum,” Physiol. Mol. Biol. Plants, vol. 24, no. 6, pp. 1295–1305, 2018.

F. N. Alfian, N. N. Afdhoria, P. Dewanti, D. P. Restanto, and B. Sugiharto, “Liquid culture of somatic embryogenesis cell proliferation of sugarcane (Saccharum officinarum),” Int. J. Agric. Biol., vol. 21, no. 4, pp. 905–910, 2019.

G. Zahra Jahangir, I. Ahmad Nasir, R. Ahmad Sial, M. Aslam Javid, and T. Husnain, “Various Hormonal Supplementations Activate Sugarcane Regeneration In-Vitro,” J. Agric. Sci., vol. 2, no. 4, pp. 231–237, 2010.

F. Damayanti, S. Suharsono, A. Tjahjoleksono, and I. Mariska, “Regeneration and histological study of somatic embryogenesis of sugarcane (Saccharum officinarum L.) cultivar PS 864,” J. Biol. Res., vol. 24, no. 1, pp. 53–57, 2018.

H. M. Tarique, M. A. Mannan, M. S. R. Bhuiyan, and M. M. Rahaman, “Micropropagation of sugarcane through leaf sheath culture,” Int. J. Sustain. Crop Prod., vol. 5, no. 2, pp. 13–15, 2010.

S. Yadav and A. Ahmad, “Standardisation of callus culture techniques for efficient sugarcane micropropagation.,” Cibtech J. Bio-Protocols, vol. 2, no. 2, pp. 29–32, 2013.

L. I. Widuri, P. Dewanti, and B. Sugiharto, “a Simple Protocol for Somatic Embryogenesis Induction of in,” vol. 2, no. 1, pp. 1–9, 2016.

J.M. Al-KhayrI, "Somatic embryogenesis of date palm (Phoenix dactylifera L.) improved by coconut water," Biotechnology 9, no. 4, pp. 477-484, 2010.

N. H. Hussein, “The role of coconut water and casein hydrolysat in somatic embryogenesis of date palm and genetic stability detection using RAPD markers,” Res. Biotechnol., vol. 4, no. 3, pp. 20–28, 2013.

V. Silveira, A. M. de Vita, A. F. Macedo, M. F. R. Dias, E. I. S. Floh, and C. Santa-Catarina, “Morphological and polyamine content changes in embryogenic and non-embryogenic callus of sugarcane,” Plant Cell. Tissue Organ Cult., vol. 114, no. 3, pp. 351–364, 2013.

X. Yang and X. Zhang, “Regulation of somatic embryogenesis in higher plants,” CRC. Crit. Rev. Plant Sci., vol. 29, no. 1, pp. 36–57, 2010.

E. J. Oliveira et al., “Morpho-histological, histochemical, and molecular evidences related to cellular reprogramming during somatic embryogenesis of the model grass Brachypodium distachyon,” Protoplasma, vol. 254, no. 5, pp. 2017–2034, 2017.

N.K. Dhillon and S.S. Gosal, “Histology of Somatic Embryos From Maize Embryo,” vol. 13, no. 1, pp. 3571–3576, 2013.

P. Dewanti, L. I. Widuri, F. N. Alfian, H. S. Addy, P. Okviandari, and B. Sugiharto, “Rapid Propagation of Virus-free Sugarcane (Saccharum officinarum) by Somatic Embryogenesis,” Agric. Agric. Sci. Procedia, vol. 9, pp. 456–461, 2016.

K. S. Sardar, T. Q. Sadaf, A. K. Imtiaz, and R. Saboohi, “Establishment of in vitro callus in sugarcane (Saccharum officinarum L.) varieties influenced by different auxins,” African J. Biotechnol., vol. 15, no. 29, pp. 1541–1550, 2016.

W. Sholeha, B. Sugiharto, D. Setyati, and P. Dewanti, “Induksi Embriogenesis Somatik Menggunakan 2 , 4- Dichlorophenoxyacetic Acid ( 2 , 4-D ) dan Kinetin pada Eksplan Gulungan Daun Muda Tanaman Tebu,” vol. 16, no. 1, pp. 17–22, 2015.

R. Kaur and M. Kapoor, “Plant Regeneration Through Somatic Embryogenesis in Sugarcane,” Sugar Tech, vol. 18, no. 1, pp. 93–99, 2016.

E. F. Melo, R. S. Ramos, C. G. Melo, C. R. Rodrigues, M. S. Vieira, and M. H. P. Barbosa, “The use of histological analysis for the detection of somatic embryos in sugarcane,” African J. Biotechnol., vol. 13, no. 6, pp. 762–767, 2014.




DOI: https://doi.org/10.24233/BIOV.6.1.2020.155

Refbacks

  • There are currently no refbacks.


E-ISSN: 2477-1392

Lisensi Creative Commons

BIOVALENTIA: Biological Research Journal © 2015-2019 Biology Department, Faculty of Mathematics and Natural Sciences, Sriwijaya University is licensed under a License Creative Commons Attribution-ShareAlike 4.0 International